2534

CONTRIBUTIONS TO THE SYSTEMATICS OF FLUOROSILICATES AND FLUOROGERMANATES. III.* THALLIUM HEXAFLUOROGERMANATE

B.HÁJEK and F.BENDA

Department of Inorganic Chemistry, Institute of Chemical Technology, Prague 6

Received July 26th, 1971

Thallium hexafluorogermanate, Tl₂GeF₆, was prepared and by means of X-ray powder analysis it was found to crystallize in the trigonal system of the structural type K₂GeF₆ ($D_{3D}^3 - P \ \overline{3} \ m$). Parameters of its unit cell are $a_0 = 5.86 \ \overline{A}$ and $c_0 = 4.87 \ \overline{A}$, which means that the compound belongs to the group IIA of Hoppe's structural systematics of ternary fluorides.

Ternary fluorides of the type $A_2^1 X F_6$, where $A^1 = K$, Rb, Cs and NH₄ and X = Ge and Si, crystallize in three structural types: K_2PtCl_6 (cubic type), K_2MnF_6 (hexagonal type) and K_2GeF_6 (trigonal type). In his structural chemical systematics of ternary fluorides, Hoppe¹ classifies them as belonging to the IIA group which also includes all the hitherto known alkali barium hexafluoro complexes of the type MeMF₆, as well as the compounds containing anions [MF₇]ⁿ⁻, [MF₃]ⁿ⁻ and [MF₄]ⁿ⁻. All these compounds are ternary fluorides, having in their lattice besides cations Me only mononuclear complex anions [MF₂]³⁻. One can expect a considerable similarity as to the structure and properties of fluorosilicates and fluorogermanates. However, it was found that hexafluorosilicates [32]⁵ crystallize mostly in cubic system of the type K₂PtCl₆ (with ammonium hexafluorosilicate also the less stable trigonal modification is known²), whereas hexafluorogermanates A_2^1 GeF₆ have usually structural lattice of the type K₂GeF₆ (except for Cs₂GeF₆ (which is known only in cubic form³).

As a part of the investigation of some fluoro complexes and of their structural chemical systematics we have prepared a further compound of the type $A_2^1 X F_6$, thallium hexafluorogermanate $Tl_2 GeF_6$ and have identified its structure by means of X-ray powder method.

EXPERIMENTAL

Preparation of the compound. Approximately 30% solution of fluorogermanic acid was prepared by solving germanium(IV) oxide (purity grade "for semiconductors", Lachema) in 40% hydrofluoric acid in an ice-cooled platinum vessel. This solution was treated under constant stirring by adding stepwise 20% aqueous solution of thallium acetate. After addition of the calculated amount (10% excess) 90% ethanol was added to the clear solution, so as to make the final concen-

Part II: This Journal 37, 1659 (1972).

Contributions to the Systematics of Fluorosilicates

tration of ethanol 60%. After some minutes a white, crystallinic precipitate was formed. It was filtrated, washed with 90% ethanol, dissolved in a small amount of water and again precipitated with 90% ethanol. Then the filtrate was dried, first at room temperature in the air for 24 h, and afterwards at 60° C to constant weight.

Analysis. Total content of fluorine was determined by titration⁴ with 0.04_M-Th(NO₃)₄. Thallium was determined as chromate according to Mach and Lepper⁵. Germanium was determined as germanium(IV) fluoride according to Tananajev⁶. For thallium hexafluorogermanate, Tl_2GeF_6 (595-4) calculated: 68-65% Tl, 12-19% Ge, 19-14% F; found: 68-25% Tl, 12-21% Ge, 19-20% F.

Roentgenographic measurements. Diffraction recordings were taken on a X-ray diffractograph Rigaku-Denki (Japan), with radiation $CuK_{\alpha} = 0.1542$ nm, Ni filter, 24 kV, 20 mA, time constant 2, sensitivity 800, region of exposures 2–45°. Relative intensities were evaluated planimetrically.

Dependence of the Volume of Unit Cell, V, on the Sum of Ionic Radii $r_A + r_X$ for Hexafluorogermanates of the Type $A_2^1GeF_6$ and for Ammonium Hexafluorosilicate with Trigonal Lattice

 $1 (NH_4)_2 SiF_6, 2 (NH_4)_2 GeF_6, 3 K_2 GeF_6, 4 Rb_2 GeF_6, 5 Tl_2 GeF_6.$

TABLE I			
Debyegram	of Thallium	Hexafluorogermanate,	Tl2GeF6

I/I_0	<i>d</i> , Å	hkl	I/I ₀	d, Å	hkl
 10	5.03	100	10	1.703	300
2	4.87	001	5	1.630	003
100	3.53	101	5	1.551	103
50	2.92	110	10	1.513	212
10	2.54	111	5	1.470	220
20	2.44	002	10	1.425	113
50	2.26	201	1	1.396	302
40	2.199	102	5	1.359	203
2	1.923	210	3	1.232	213
15	1.879	112	4	1.223	004
20	1.795	211	4	1.190	104
10	1.769	202	4	1.174	320

Collection Czechoslov. Chem. Commun. /Vol. 37/ (1972)

RESULTS

By chemical analysis it was proved that the compound obtained by the abovedescribed procedure is thallium hexafluorogermanate, Tl_2GeF_6 . From the diffractogram it follows (Table I), upon assigning the *hkl* indexes to the respective diffraction lines, that the compound has a trigonal lattice of the structural type K_2GeF_6 (spatial group $D_{3D}^3 - P \tilde{3}$ ml) with the parameters of the unit cell $a_0 = 5.86$ Å and $c_0 =$ = 4.87 Å. Consequently, this type of hexafluorogermanate ranges with potassium, ammonium and rubidium hexafluorogermanates, also having this kind of crystal lattice, whereas analogous hexafluorosilicates have a cubic lattice. The validity of Gattow's rule⁷, concerning the linear dependence (in the first approximation) of the volume of unit cell on the sum of ionic radii ($r_A + r_X = \text{const. } V + \text{const.'}$, where r_A , r_X are the ionic radii of particles A and X and V is the volume of unit cell) was also verified for hexafluorogermanates of the type $A_2^1\text{GeF}_6$ and for ammonium hexafluorosilicate (Fig. 1).

REFERENCES

- 1. Hoppe R.: Z. Anorg. Allgem. Chem. 294, 137 (1958).
- 2. Gossner E., Kraus O.: Z. Krist. 88, 223 (1934).
- 3. Sharpe A. G.: J. Chem. Soc. 1953, 197.
- 4. Willard H. H., Winter O. B.: Ind. Eng. Chem., Anal. Ed. 5, 7 (1933).
- 5. Mach F., Lepper W.: Z. Anal. Chem. 68, 36 (1936).
- 6. Tananajev V.: Ž. Neorg. Chim. 3, 2166 (1958).
- 7. Gattow G.: Z. Anorg. Allgem. Chem. 333, 134 (1964).

Translated by V. Čermáková,